
What is SIOC?

Nico W. Kaan, Delft, The Netherlands, 2017 ©

SIOC is a programming language/system that has been specifically developed to program a

Flightdeck based on Opencockpits IOCards.

Basically this means connecting a switch in your home build cockpit to the

aircraft in FSX/P3D and, the other way around, using information in that

aircraft to control led's and digits in your cockpit.

There is often confusion about how to use SIOC. Therefore I will try to explain the basics.

To start with one should forget about running at multiple PC's, forget about the IOCP

protocol/variables and forget about 'servers'. You only need:

 a text editor such as Notepad, to write your script(-s);

 the sioc.exe program to compile and run your scripts.

Furthermore, the siocmonitor.exe program is very handy to check whether your hardware is

working correctly. SIOC and siocmonitor are all installed by the sioc.zip package (free).

Very important to understand is that SIOC is not a 'normal' procedural programming language

with a clear start and a clear end (like Pascal, C, C++, Java, ...), but an event driven scripting

language ...

Ok... (uh, yes...), but what does that mean???

Well, SIOC works with Variable declarations. Variables represent connections

to the outside world, such as FSUIPC offsets (your link with your aircraft in

FS9/FSX), push buttons, switches, rotary switches, rotary encoders, led's, 7-

segment display, servo's, and so on, or they represent internal program states or

subroutines.

SIOC monitors the Variables connected to the outside world say 50 times per

second in order to detect any changes in values. If a Variable gets another

value, then (and only then!) the code in the body of the Variable, enclosed by

curly brackets { }, is executed. This can cause another Variable to change

value and so you may get a chain of events. Ideal for simulating the logics of

an aircraft!

It is very important to understand this behavior of SIOC. One might call it the SIOC Golden

Rule

If you start sioc.exe the SIOC window will pop up. Below is a screen shot of that window at

my PC.

The <IOCards> Module sub window should indicate Running.

The <FSUIPC> Module sub window gives information about use and status of FSUIPC.

This depends on your setting in sioc.ini (see below); whether you have enabled FSUIPC or

not. Note if you are not using FSUIPC offsets in your SIOC script you better disable FSUIPC.

The <IOCP> SERVER sub window gives information about the Host address

(192.168.1.105) and the Port (8092) over which an IOCP server that is build in SIOC, is

available. My lekseecon program connects to this IOCP server to exchange information about

the Variables in the SIOC program. In the LOG sub window you will find the message "IOCP

Client Connected" as soon as lekseecon connects to SIOC. The actual number of Clients

connected is indicated in the IOCP SERVER sub window.

The <IOCP> Client Modules #0 and #1. For almost all users these should be Disabled, don't

pay much attention to it, just take the settings in your sioc.ini as I have (see below).

The Devices sub window tells you which Opencockpits USB cards SIOC has detected. At my

PC it has detected my two USB expansion cards, my MCP module, my Chrono module, my

IOCards-Keys card and my USB Outputs card.

The Line "IDX = 0 - USBexp V2 - Device = 35 " gives important information: it means that

in my computer the (physical) Device number of this USB expansion card has got number 35.

In the sioc.ini file you can specify the logical device number for the use of this device in

SIOC (in this case 0). This logical number is used as parameter for the DEVICE attribute for

SIOC variables. The link between the logical device number used in SIOC and the physical

device number at my PC is defined in the sioc.ini file in the SIOC folder. Below a screen shot

of -part of- my sioc.ini:

Let me explain the first line in the [MASTERS] block:

MASTER=0,4,4,35

 The first number is the logical device number (0).

 The second number defines the type of the USB device (4=USB expansion card)

 The third number defines the number of Master Cards connected to this USB device

(4)

 The fourth number defines the physical Device number of this USB device at my PC

(35).

You see? By doing this we have linked DEVICE 0 to physica device 35 (as you can see in the

SIOC main window). Be aware that if you unplug your USB card and plug it into another

USB port you will get another number then 35 ... and you will have to update your sioc.ini.

But the advantage of this concept is that you do not have to change your SIOC scripts.

More info about the DEVICE attribute in SIOC is given in this how-to example.

To get your settings right just start SIOC and write down the Device number(-s) detected.

Then close SIOC, update your sioc.ini and start again.

The LOG sub window shows that SIOC has loaded and is running the script cockpit767.ssi.

Finally the line E:\IOCards\SIOC\cockpit767.lst in the black rectangle at the bottom shows

value of the CONFIG_SIOC parameter in sioc.ini. This parameter specifies the SIOC source

that will be input to SIOC.exe. In this case cocpit767.lst is a file containing just the names of

(lots of) SIOC scripts that together control my cockpit:

http://www.lekseecon.nl/howto.html#device

As SIOC starts it will first compile these scripts (takes about 2 seconds) and if there are no

errors (indicated by File Compiled! in the LOG window) it will start executing.

How to program in SIOC

Here some some basic examples are given about how to program in SIOC (by writing scripts).

All these examples are not specific for a certain type of aircraft (add-on) in Microsoft Flight

Simulator or Prepar3D.

Push Button

On/off Switch with two terminals

Rotary Switch (1 x n)

On/off switch with three terminals

Rotary Encoder

Dual Rotary Encoder

Rotary Encoder with a push button in the shaft

Read from a FSUIPC offset

Write to a FSUIPC offset

Read/Write to a FSUIPC offset

Driving a led

Driving a digit

Write a value to a 3 digit display (simple)

Suppress (blank) leading zeroes in a display

Writing negative numbers to a display

Write a value to a 3 digit display (advanced)

Dim a display with a rotary encoder

Dim the Decimal Point of a display

Internal Variables

Initialization constructs

Flow of Control at start-up

Subroutine Var

Hold up execution of program flow

Names instead of Numbers

Toggle a value

Landing Lights Toggle

Light a led after n seconds

Light a led for n seconds

Make a led blink for n seconds

Stop a blinking led by pushing a button

Make a led blink a fixed number of times

An endless Timer

Add auto repeat to a Switch

Set Altimeter (QNH) with a rotary encoder

Play sound

GMT HH:MM clock

Key generation in SIOC

Send FSUIPC FS Control in SIOC

What is the use of the DEVICE attribute?

How to code Cold and Dark and Lights test?

Push Button

The push button is a switch that makes an electrical circuit when it is pushed. So it closes the

contact when pushed and it opens the contact when released (not pushed). (note: for the

purists, there are also push buttons that 'brake' a contact when pushed).

It has two terminals, one has to be connected to the ground of a group of inputs of the master

card and the other to one of the 9 inputs of that same group at the Master Card. What terminal

is connected to what does not matter. If the button is not pushed the input is high (1) and if

pushed the input is low (0).

In SIOC one programs a push-button like this, define a Variable and link it to a button:

 Var 1 Link IOCARD_SW Input 23 Type P

Type P will make SIOC latch the button changes, so each time the button is pushed, the state

of Var 1 changes (from 0->1, from 1->0, and so on). If the button is pushed the input changes

state and the code attached to the Var is executed.

Another possible way of using a push-button in SIOC is (note Type I instead of Type P):

 Var 2 Link IOCARD_SW Input 23 Type I

Var 2 will be 1 if the push-button is pushed and 0 if the push-button is not pushed. So there is

no latching of states like with type P.

And yet another way of using a push-button in SIOC is:

 Var 3 Link IOCARD_SW Input 23 Type P

 {

 IF v4 = 0

 {

 v4 = 1

 }

 ELSE

 {

 v4 = 0

 }

 }

 Var 4

The value of Var 3 does not matter now, each time the button is pushed Var 4 will change

value.

On/off switch with 2 terminals

This switch (Single Pole Single Throw or SPST) has two mechanically different positions. In

one position the contact is closed and in the other position the contact is open. Most popular

are the toggle type ones with a small lever and the button type ones. The terminals have to be

connected to the Master Card in the same way as a push-button.

In SIOC one codes an on/off switch with two terminals like this:

 Var 1 Link IOCARD_SW Input 23 Type I // I means "on/off" switch.

Var 1 is 0 or 1 depending on the physical position of the switch (toggle or push type does not

matter).

Rotary Switch

This switch has n mechanically different positions. One terminal is the common ground and

the other n terminals represent each position of the rotary switch.

The common ground has to be connected to the ground of a group of 9 inputs of a Master card

and the n other terminals have to be connected to n inputs of the same group.

In SIOC one codes a rotary switch with n (say 3) positions with n vars, one for each input of

the Master card:

 Var 1 Link IOCARD_SW Input 23 Type I // I means "on/off" switch.

 Var 2 Link IOCARD_SW Input 24 Type I

 Var 3 Link IOCARD_SW Input 25 Type I

Due to the mechanical design of the rotary switch only one contact can be closed at a time, so

only one of the three Vars will be 1, and the others will be zero, when the switch is in a

position.

On/off switch with 3 terminals

The Single Pole Double Throw or SPDT switch has two mechanically different positions. It's

a so called Change Over switch, there is always one closed and one open position. Most

popular are the toggle type ones with a Lever and the button type ones. One terminal is the

common ground and the other two terminals are for each position. The common ground has to

be connected to the ground of a group of 9 inputs of a Master card and the two other terminals

have to be connected to two inputs in the same group.

In SIOC one codes an on/off switch with three terminals with two Vars, one for each input of

the Master card:

 Var 40 Link IOCARD_SW Input 23 Type I // I means "on/off" switch.

 Var 41 Link IOCARD_SW Input 24 Type I

Var 40 is 0 or 1 depending on the physical position of the switch (lever or push type does not

matter). Var 41 is 0 or 1 depending on the physical position of the switch and Var 40 and Var

41 always have different values!

Note that the behavior of a SPDT switch is exactly the same as a rotary switch with 2

positions.

Rotary Encoder

http://www.lekseecon.nl/howto.html#rotary_switch

The rotary encoder has three terminals, one common ground and one for each direction. We

can connect a Gray Type rotary encoder directly to the Master Card in the same way as a

three terminal On/off Switch (see above), with the restriction that you have to use two

(logically) consecutive inputs of the Master Card.

In SIOC one codes a gray type rotary encoder like this (note the Type 2 attribute):

 Var 1 Link IOCARD_ENCODER Input 40 Aceleration 2 Type 2

Input 40 is the first logical input, the second input is assumed to be input 41. With aceleration

you can specify if you want to increase with higher delta's if you turn faster.

Here an example from a Heading Rotary:

 Var 1 Link IOCARD_ENCODER Input 40 Aceleration 2 Type 2

 {

 L0 = v1 // * -1 turning clockwise should be plus

 v2 = ROTATE 0 359 L0

 }

 Var 2 // heading (0 .. 359)

Var 1 contains the encoder value (increment/decrement) caused by turning the rotary encoder.

With the ROTATE function this delta is added/subtracted to Variable 2.

The ROTATE function does so by taking the actual value of Var 2 first, then it adds the

increment and checks the resulting value against the range (defined by the first two attributes

supplied to the ROTATE function) and if necessary wraps around and then assigns the

resulting heading to Var 2. Var 2 contains the value of the heading, ranging from 0 to 359. By

default var 2 starts with 0, if necessary give it another initial value with the Value attribute.

Make sure the encoder is generating positive values when turning clockwise. Note that the

encoder value is dependent on the way you have connected the two pins of the encoder to the

two inputs of the Master Card. If turning clockwise does not increment the value (but

decrement) you can correct that that by interchanging the two wires. You can also do that

quite easily in SIOC (without hardware changes) by multiplying the value coming from the

encoder by -1, so the example above would then read:

 Var 1 Link IOCARD_ENCODER Input 40 Aceleration 2 Type 2

 {

 L0 = v1 * -1 // turning clockwise should be plus

 v2 = ROTATE 0 359 L0

 }

Dual Rotary Encoder

A dual Rotary Encoder is composed of two rotary encoders. It has 2 * 3 terminals. We can

connect a Gray Type dual rotary encoder directly to the Master Card in the same way as two

single rotary encoders.

Here a SIOC script for a dual Rotary Encoder controlling a VOR frequency (in the range from

108.00 to 135.00):

 Var 1 Value 0 // decimal digits

 Var 2 Value 8 // freq digits

 Var 4 Link IOCARD_ENCODER Input 22 Aceleration 1 Type 2

 {

 L0 = v4 // * -1 make sure turning right increments

 L0 = L0 * 5 // steps of 5

 v1 = ROTATE 0 99 L0

 }

 Var 5 Link IOCARD_ENCODER Input 24 Aceleration 1 Type 2

 {

 L0 = v5 // * -1 make sure turning right increments

 v2 = ROTATE 8 35 L0

 }

The decimal digits are controlled by Var 4. First the increment is multiplied by 5, and then the

ROTATE function will keep the value in the range 0 .. 95. (so in steps from 00, via 05 to 95)

The frequency digits are controlled by Var 5. Due to the ROTATE function the value in v2 is

incremented or decremented between 8 and 35.

So together with a fixed fifth digit (always being '1') we get VOR frequencies between 108.00

and 135.00

Rotary Encoder with Push Button

If you want to control a frequency you preferably use a Dual Rotary Encoder, so you can set

as well the integer as the decimal part of the frequency. However, these dual rotary encoders

are expensive and hard to get so either you build a dual rotary encoder your self or you use a

Rotary Encoder with a Push Button in the shaft.

In the following example we control the integer and decimal part of a VOR frequency with a

single gray type rotary encoder. Switching between integer/decimal is done with the push

button in the shaft.

 Var 1 Value 0 // decimal digits

 Var 2 Value 8 // freq digits

 Var 3 Link IOCARD_SW Input 20 Type P // in the shaft

http://www.lekseecon.nl/howto.html#rotaryencode

 Var 4 Link IOCARD_ENCODER Input 22 Aceleration 1 Type 2

 {

 L0 = v4 // * -1 make sure turning right increments

 IF v3 = 0

 {

 L0 = L0 * 5 // steps of 5

 v1 = ROTATE 0 99 L0

 }

 ELSE

 {

 v2 = ROTATE 8 35 L0

 }

 }

Depending on the value of Var 3 the rotary increment is added to the integer frequency part or

to the decimal part.

Read from a FSUIPC offset

If you want to read from a FSUIPC offset you should define a Variable linked to FSUIPC, by

using the attribute FSUIPC_IN. The Offset attribute defines the hexadecimal address of the

offset, and the Length attribute is the number of bytes.

In the following example Var 1 is Linked to offset $0BC8 which represents the state of the

Parking Brake (see FSUIPC for Programmers.doc in the FSUIPC SDK).

 Var 1 Link FSUIPC_IN Offset $0BC8 Length 2 // parking brake state

 {

 IF v1 = 0

 {

 v2 = 0

 }

 ELSE

 {

 v2 = 1

 }

 }

 Var 2 Link IOCARD_OUT Output 91 // led indicating parking brake set

Each time the offset in FSUIPC changes value, SIOC will write that new value into Var 1 and

the statement in the body of Var 1 will be executed. So dependent on the value of Var 1, Var

2 will be assigned a 0 or a 1. Var 2 is linked to a Master Card output and controls a led. So

with this simple piece of program we have got a led that indicates the state of the parking

brake.

Note that without any more specification then this, the value of Var 1 will be treated as

unsigned value. If you want to treat a FSUIPC offset as signed value you have to add the

attribute Type 1 to the Link definition. Take for example the elevator trim offset in FSUIPC:

 Var 1 Link FSUIPC_IN Offset $0BC2 Length 2 Type 1 // elev. trim

 {

 // var 1 has range -16383 .. 16383

 }

Sometimes a FSUIPC offset contains a value that needs further calculations. That is for

instance the case with the TRUE heading offset $0580. In the FSUIPC for Programmers

Manual we can read that you have to take the offset *360/(65356*65356) in order to get a

TRUE heading. In this specific example the heading ranges from -180 to 180 degrees,

whereby 0 degrees is North. In order to get a heading in the range 0 - 359 we have to multiply

the offset by 0,000000083819 and for negative values add 360. The SIOC code for that is:

 Var 1 name HDG Link FSUIPC_IN Offset $0580 Length 4 // true heading

 {

 L0 = &HDG * 8.3819E-008

 IF L0 < 0

 {

 L0 = L0 + 360

 }

 &D_HDG = ROUND L0

 }

Note that at we round the resulting value to the nearest integer. This value is always in the

range 0 - 359 and ready to be written to a display.

The previous example showed TRUE heading, but if you want a Magnetic heading you have

to take the variation (dependent on where you are) into account. Luckily that variation is also

available as FSUIPC offset. Here is the modified code:

 Var 1 name HDG Link FSUIPC_IN Offset $0580 Length 4 // true heading

 {

 L0 = &HDG * 8.3819E-008

 IF L0 < 0

 {

 L0 = L0 + 360

 }

 L1 = &VARIATION * 0.0054932

 L0 = L0 - L1

 &D_HDG = TRUNC L0

 }

 Var 2 name VARIATION Link FSUIPC_IN Offset $02A0 Length 2

Write to a FSUIPC offset

If you want to write to a FSUIPC offset you should define a Variable linked to FSUIPC by

using the attribute FSUIPC_OUT. The Offset attribute defines the hexadecimal address of

the offset, and the Length attribute is the number of bytes.

 Var 1 Link FSUIPC_OUT Offset $0C4E Length 2 // Set NAV1 CRS

 Var 2

 {

 v1 = 123

 }

Var 1 is a link to the FSUIPC offset that is used to set the CRS of Navigational Radio 1.

Var 2 is a variable that, if it changes value and its body (between curly brackets) is executed,

will assign Var 1 with a value of 123. This value is passed to FSUIPC offset 0x0C4E by

SIOC.

But when will this happen? At the moment never, because there is no event that assigns Var 2

a value ...

In order to make this work we can for instance connect a push button to Var 2 like this:

 Var 2 Link IOCARD_SW Input 23 Type P

 {

 v1 = 123

 }

If the button is pushed, Var 2 will become 1 or 0. In this example we do nothing with that

particular value, but due to the fact that Var 2 has got a new value the statements between the

curly brackets of Var 2 are executed and Var 1 will become 123 and thus the FSUIPC offset

0x0C4E becomes 123 and the CRS of the Navigational Radio 1 becomes 123.

Read/Write to a FSUIPC offset

A lot of FSUIPC offsets are as well used to give you information about a value in the flight

sim panel as to set that value in the panel. If you want to read/write to a FSUIPC offset you

may define a separate Var for reading and a separate Var for writing. However, it is more

efficient to define a Var for read and write operations. This is done by linking with

FSUIPC_INOUT.

Examples of this type of use are rotaries for controlling heading, course, frequency, and so on.

If you would like to be synchronized with the flight sim panel, you should at least take the

initial values in the panel (while loading a flight) of the course, heading, and so on into

account. This to display these value at your hardware displays and to let your rotaries work

with the actual values.

Also during operation, if you would use the mouse in the panel to change the course, you also

would like your rotaries and your displays to take that into account.

The following example is a fully synchronized NAV1 Crs script. It does all the things

mentioned above.

 Var 1 Link FSUIPC_INOUT Offset $0C4E Length 2 // NAV1 CRS in FSUIPC

 {

 v2 = v1 // new value from FSUIPC ? (see note below)

 }

 Var 2 // internal NAV1 CRS

 {

 v4 = v2 // write to my 3-digit display

 }

 Var 3 Link IOCARD_ENCODER Input 22 Aceleration 4 Type 2

 {

 L0 = v3 // * -1 make sure turning right increments

 v2 = ROTATE 0 359 L0 // update NAV1 CRS

 v1 = v2 // write to FSUIPC

 }

 Var 4 Link IOCARD_DISPLAY Digit 25 Numbers 3 // Display

Note: the statement v2 = v1 in the body of Var 1 will have no effect if the new value comes

from the rotary (from the body of Var 3) because v2 then already has the value of v1 (SIOC

Golden rule).

Only values coming from FSUIPC that are different from the value in v2 (at start up or if you

have used the mouse in the panel) will have a synchronization effect at Var 2. This is exactly

what we want to achieve!

It is very important to understand this SIOC script with just four variables, because it

demonstrates the power (letting a rotary, a 3 digit display and a FSUIPC offset working

together) of SIOC very elegantly. Please study this carefully and try to explain its behavior,

the flow of control, in your own words.

Led

A single led can to be connected to an output at the Opencockpits Master Card or to an output

at the Opencockpits USB Outputs card, always with a resistor of 280 or 330 ohm placed in

series.

Important: Note the fundamental difference in approach between these two cards, the outputs

of the Master Card share a common ground, while the outputs at the USB outputs card share a

common Voltage (+5 normally). So take that into account while designing your electrical

circuits.

In SIOC you can forget about these electrical differences and connect the output to a variable

like this, see Var 1.

 Var 1 Link IOCARD_OUT Device 1 Output 91 // led

In sioc.ini the logical device number 1 is linked to a physical USB device number; there you

can make the difference between a Master Card and a USB Expansion card.

Note that you should only assign values 0 or 1 to Var 1. A 1 will imply that the led will lit.

Digit

The Opencockpit Display card can control up to 16 seven-segment digits.

You can connect four Display cards to a Master Card, so in total you can control up to 64

digits per Master Card.

Digits can be dimmed.

If you want to use just one digit you can use the following SIOC code:

 Var 1 Link IOCARD_DISPLAY Digit 0 Numbers 1

Attribute Digit indicates which of the 64 digits and Attribute Numbers indicates how many

digits, starting from 0 (in this example).

If you want to write a '5' to this digit, just assign Var 1 the value 5, like this:

 v1 = 5

If you write a '6' to this digit you will get a (normal) 6 without the upper segment of the 7-

segment display. However, if you write the code -999997 to the digit you will get a 6 with the

upper segment on, as in use in some cockpits, for instance in the Level-D 767.

If you want to blank the digit, write code -999999

If you want to write a '-' sign (minus), write code -999998

The decimal point of a 7-segment display cannot be controlled via the Opencockpits Display

card. You do that via an output of the Master card. Just connect an output (WITHOUT A

RESISTOR) directly to the DP pin of the 7-segment display (just a single wire, NO

GROUND NEEDED)

Write to a 3 digit display

The previous example showed how to write to a single digit. However, in a cockpit you often

want to write a HDG or CRS to a 3 digit display (build out of three 7-segment display units).

Suppose the CRS is in Variable 1 (ranging between 0 and 359). We then simply write that

value to a Variable 3 that is Linked to a DisplayII card of Opencockpits. The Digit attribute

indicates the (physical) number at your DisplayII card of the least significant digit of the 3

digit value (the '9' in case of a value of 359). The Numbers attribute defines the number of

digits, in this example it is 3. This means that we are using Digits 0, 1 and 2 for the CRS

value. Important: you have to physically assemble them, from left to right, as 2, 1, 0.

 Var 1 // CRS

 {

 v3 = v1

 }

 Var 3 Link IOCARD_DISPLAY Digit 0 Numbers 3

For more advanced writing to displays, see the advanced example.

Suppress (blank) leading zeroes in a display

Suppose you have a 2 digit display showing numbers between 1 and 99 and you would like to

see leading zeroes blanked, like " 7" instead of "07". How do you code that in SIOC?

The approach I recommend is to treat each digit separately, so define two displays of one digit

each instead of one display of two digits. Start computing digits from right to left, so the least

significant digit first, like this:

 Var 1 name Value // 1 .. 99

 {

 L0 = &Value

 L1 = MOD L0 10 // value Modulo 10 gives the right digit

 &DigitR = L1

 L1 = DIV L0 10 // Value / 10 gives us the left digit

 IF L1 = 0 // if 0 do not write but send blank display code

 {

 &DigitL = -999999 // blank

 }

 ELSE

 {

 &DigitL = L1

 }

 }

 Var 2 name DigitR Link IOCARD_DISPLAY Digit 0 Numbers 1

 Var 3 name DigitL Link IOCARD_DISPLAY Digit 1 Numbers 1

Writing negative numbers to a display

If you want to write a negative number to a display you should always take one display 'digit'

extra into account for showing a minus sign or a blank. Note that it is not possible to display a

+ sign, so a blank means plus.

Suppose you want to display numbers ranging from -9 to +9; then you need a display of one

digit for the number and a display of one digit for the minus sign, like this:

 Var 1 name Value // -9 to +9

 {

 &Digit = ABS &Value // take the absolute value

 IF &Value < 0 // negative

 {

 &Sign = -999998 // minus sign '-'

 }

 ELSE

 {

 &Sign = -999999 // blank

 }

 }

 Var 2 name Digit Link IOCARD_DISPLAY Digit 0 Numbers 1

 Var 3 name Sign Link IOCARD_DISPLAY Digit 1 Numbers 1

Write to a display (advanced)

As your cockpit grows and grows you are no longer happy with the fact that your displays are

always on, even if your cockpit is cold and dark... And for maintenance you would like to be

able to test all segments of your displays.

This can be done in SIOC if you adapt to the following approach. Never write to a Display

directly but use a Subroutine for each display. In the subroutine we can test for ColdAndDark

and/or Lights test and act accordingly, if life is normal we output the value to the Display.

Don't forget to call the OutCrs subroutine as well as the CRS changes value (in Var 1) as if

the cockpit changes state (to/from cold and dark) or if we push or release the Lights Test

button:

 Var 1 name CRS

 {

 CALL &OutCRS

 }

 Var 2 name OutCRS Link SUBRUTINE

 {

 IF &ColdAndDark = 1

 {

 v3 = -999999 // blank the display

 }

 ELSE

 {

 IF &TestLights = 1

 {

 v3 = 888 // put all segments on by writing 8's

 }

 ELSE

 {

 v3 = &CRS // normal case, write the value to the display

 }

 }

 }

 Var 3 Link IOCARD_DISPLAY Digit 0 Numbers 3

I have not coded ColdAndDark and TestLights in this example.

Dim a Display

The Opencockpits DisplayII unit can be dimmed, which is a nice feature.

Undimmed the DisplayII card is able to control 16 7-segment displays, numbered from 0 to

15. When dimming is used the DisplayII card is able to control 15 7-segment displays,

numbered from 0 to 14, display 15 is then used to control the brightness of display units 0..14.

So we loose one 7-segment display, a pity but not a big deal because we can connect up to 4

DisplayII cards to one Master Card and they are not very expensive. But it is something to

take into account when building a MCP for instance: always plan for future extensions (there

will come the day that you will want this feature...), so do not use display segment 15 for a

digit, even if you are not using Dimming.

The next example shows how you dim a display using a gray type rotary encoder:.

 Var 1 name Dimmer

 Var 2 name RO_Dimmer Link IOCARD_ENCODER Input 40 Aceleration 1 Type 2

 {

 L0 = &RO_Dimmer

 &Dimmer = LIMIT 1 15 L0

 &D_Dimmer = -999994

 &D_Dimmer = &Dimmer

 }

 Var 3 name D_Dimmer Link IOCARD_DISPLAY Digit 15 Numbers 1

There are 15 possible brightness control values, indicated with values 1 to 15.

The rotary encoder generates values between 1 and 15 (due to the LIMIT function), which are

kept in Var 1 during the time you are not turning the rotary encoder.

The brightness control value is send to "digit" 15 after we have sent -999994, a sort of escape

(attention) value to tell the Display2 unit that we want to send a brightness control value.

That's all...

Note that this code does not interfere with the normal SIOC code used to write values to

DisplayII cards, that code remains unchanged, also a nice feature.

Dim the Decimal Point of a Display (NEW!)

The decimal point of a display can be dimmed in software (using Pulse Width Modulation)

with the following script:

 Var 0 Value 0

 {

 &dimcontrol = 0

 &dimcontrol = TIMER 1 0 4 // 4 means 40 msec

 }

 Var 5 name dimvalue value 3 // values: 1=25%, 2=50%, 3=75%, 4=100%

 Var 6 name DPvalue // 0 or 1

 Var 10 name dimcontrol Link SUBRUTINE

 { // is called 25 times per second

 &DP = &DPvalue

 IF &DPvalue == 1

 {

 IF &dimvalue <= 3

 {

 IF &dimvalue >= 1

 {

 &DP = DELAY 0 &dimvalue // determines the width of the pulse (PWM)

 }

 }

 }

 }

 Var 20 name DP Link IOCARD_OUT Output 78

There are three dimming levels. We could program more but then the frequency would go

below 25Hz and flickering would occur.

Note: The dimcontrol subroutine is called 25 times per second by an endless Timer.

You can connect this DP-dim script to the rotary that controls the dimming of the same

display (see previous example), by expanding the code of the Dimmer variable in that script

as follows:

 Var 1 name Dimmer

 {

 L0 = &Dimmer

 L0 = L0 + 1

 IF L0 <= 4

 {

 L0 = 4

 }

 &dimvalue = DIV L0 4

 }

The DP will now stepwise dim, synchronised with the dimming of the digits.

Internal Variables

Internal Variables can be used to to store intermediate results. You can use these variables

inside the body of a Variable.

There are six Internal Variables, three of type Boolean: C0, C1 and C2, and three of type

Integer/Float: L0, L1 and L2.

Example of Boolean usage:

If we have to test IF v1 > 2 AND V1 < 10 then we put the result of each comparison in a

boolean internal variable first:

 Var 1

 {

 C0 = v1 > 2

 C1 = v1 < 10

 IF C0 AND C1

 {

 // ...

 }

 }

Example of Integer usage:

Suppose we want to assign Var 3 the value of the total of Var 1 * 10 + Var 2.

We cannot write v3 = v1 * 10 + v2 because only one operator is allowed in a statement, so we

write it as follows:

 Var 10

 {

 L0 = v1 * 10

 v3 = L0 + v2

 }

Initialization constructs

There are two SIOC language constructs that can be used to give a SIOC variable an initial

value at the time the program starts to run. One is to give a Variable definition a Value

Attribute like this:

Var 1 Value 345

Var 1 will get a value of 345 when the program starts, and only then.

The other way is Variable 0, note that all variables are treated equal with the exception of Var

0 with Attribute Value.

Variable 0 is the Variable, if present because it is optional, and if it has an attribute Value

attached, that will be executed first when the program starts. In this variable you can assign

other variables a value. Variable 0 execution also precedes the Value attribute of another

Variable (described above)..

 Var 0 Value 0

 {

 // initial assigments of values to variables in here

 }

An example of an initialization procedure can be found in the example about Flow of Control.

Flow of Control at start up

[example based on text from Peter Depoortere, thank you Peter!]

SIOC is a program and the SIOC script is just telling the program which are the Variables it

has to work with and what to do when one of those Variables changes value.

Initially the SIOC program sets all Variables to a value of 'unknown'. Then it starts its

function. It checks first Variable 0 (Var 0) and if you set this value to an initial value of 0 (or

something else) the value of Var 0 changes from unknown to 0 (or something else). Since Var

0 changes value it will execute the body between the { } attached to this Var. This body can

of course set values to other Variables which have, until this moment, the value of unknown.

Thus generating a chain of events. Like this it will continue until all Vars are initialized.

When all these initialization events are over, the SIOC program continues its course by

examining all possible inputs it can have, like hardware inputs closing/opening, FSUIPC_IN

changes, FSUIPC_INOUT changes, etc. It will read these fsuipc offsets that you defined as IN

http://www.lekseecon.nl/howto.html#flow

or INOUT which a certain pace, defined in sioc.ini, default at a refresh rate of 50 msec (20

times /sec).

When one of these values change, the body attached to the Variable will be executed and this

can generate a chain of Variable changes and other bodies to be executed. [Something special

are the timers since these will be able to run in another thread and change a Variable in a

certain timely manner.]

I give a small example:

 Var 0 name INIT value 123

 {

 &Var1 = 10

 &Var2 = 20

 }

 Var 1 name Var1

 Var 2 name Var2

 {

 IF &Var1 = 10

 {

 &led = 1

 }

 }

 Var 3 name led Link IOCARD_OUT

 Var 4 name gear Link FSUIPC_IN offset XXXX length y

Initially the SIOC program will build a database registering 5 Variables with value 'unknown'

and it will register for each of these Variables a body to execute. Var 1 and Var 3 and Var 4

will have an empty body.

Now SIOC will treat first Var 0 and set the value to 123 so its value changes and the body

needs to be executed. So it will set Var 1 to 10, so its changes value from unknown to 10 but

there is no body to execute so SIOC goes to the next line where it will set Var 2 to 20. Now

Var 2 changes from unknown to 20 and there is a body defined so it will execute that body.

This Var 2 body checks to see if Var 1 is 10 and this is true so it sets Var 3 to 1. Var 3

changes from unknown to 1 so it needs to do the body. But there is no body. However it is

linked to an output so it will send this to the hardware where the output will become logically

1 and the led will lit.

Now SIOC finished treating Var 0 so it goes to Var 1, this one does not have an initialization

value so nothing needs to happen. SIOC goes to Var 2, again no individualization value

specified so nothing to do. The same for Var 3.

Now SIOC ends up at Var 4 which is an FSUIPC input at offset XXXX, so it will copy the

value from offset XXXX to Var 4. If Var 4 would have a body it would execute this one too...

Finally the complete initialization is done and SIOC will read continuously FSUIPC offset

XXXX, since this is the only input defined. If it changes value it will copy the new value into

Var 4.

Subroutine Var

A special type of Var is a Subroutine. It is defined by adding Link SUBRUTINE to the Var

declaration.

A subroutine Var is special because it is the only exception to the SIOC Golden Rule that says

that a script attached to a Var is only executed if the var changes value. The script attached to

a subroutine Var is always executed, whether the Var is assigned a value or called.

One can define subroutine Vars that do not use the Value of the Var in the attached script:

 Var 1 name OutHDG Link SUBRUTINE

 {

 &O_HDG = &HDG // assign to a value outside this script

 }

Or one can define subroutine Vars that use the actual value of the Var in the attached script:

 Var 2 name OutIAS Link SUBRUTINE

 {

 &O_IAS = &OutIAS // assign to the value of Var 2

 }

An example of assigning a value to a subroutine Var:

 &OutIAS = 3

An example of calling a subroutine Var:

 CALL &OutHDG

If you CALL a subroutine, you may (optionally) add a parameter. The Subroutine Var will get

that value:

 CALL &OutIAS 3

 CALL &OutIAS L0

 CALL &OutIAS v908

Hold up execution of program flow

Most procedural programming languages have Wait functions that hold up execution. SIOC

has not.

If you want to hold up execution you have to spread your code in two variables, start

execution in the first variable and jump to the second variable with a DELAY statement like

this:

 Var 1

 {

 // some code here

 v2 = DELAY 1 100 // after 1 second delay jump to v2

 }

 Var 2

 {

 // delayed code here

 }

Putting the delayed code right after the DELAY statement would not work, because SIOC

"executes the DELAY statement in the sense that it sets the assignment to v2 aside for

execution at a later time" and it continues immediately with any statement after the DELAY

statement...

Note: If you want this flow of control to be reentrant you must assign a different value to var

2 each time. The first parameter of the DELAY statement cannot be a fixed value then.

An example of this technique can be found in the HowTo example Making a led blink a fixed

number of times.

Names instead of Numbers

Compare these two small programs, that do exactly the same thing:

 Var 1 Link FSUIPC_IN Offset $0BC8 Length 2 // parking brake state

 {

 IF v1 = 0

 {

 v2 = 0

 }

 ELSE

 {

 v2 = 1

 }

 }

 Var 2 Link IOCARD_OUT Output 91 // led indicating parking brake set

and

 Var 1 name ParkingBrake Link FSUIPC_IN Offset $0BC8 Length 2

 {

 IF &ParkingBrake = 0

 {

 &PBrakeLed = 0

 }

 ELSE

 {

 &PBrakeLed = 1

 }

 }

 Var 2 name PBrakeLed Link IOCARD_OUT Output 91

The second program is to be preferred, because:

 If you renumber your Vars, you only have to do it at one place, you don't have to

search for other occurences of the same Variable number.

 There is less need to comment your program because you can put semantics in the

Variable names.

 Names can be used in other SIOC scripts if you compile multiple files in one go.

 And finally your program is easier to comprehend by other people.

Toggle a value

Suppose we have a Flag Variable with values 0 or 1.

 Var 1 name Flag Value 0

There are two ways in the SIOC software to change this Flag value from 0 to 1 or from 1 to 0

(called toggling)

 Var 2

 {

 &Flag = CHANGEBITN 0 &Flag

 }

or

 Var 3

 {

 IF &Flag = 0

 {

 &Flag = 1

 }

 ELSE

 {

 &Flag = 0

 }

 }

The CHANGEBIT method in Var 2 is to be preferred.

Landing Lights toggle

This example is based on the generic FSUIPC offset for the lights, it will work with almost

any aircraft. This is how the SIOC code reads:

 Var 1 Link IOCARD_SW Input 50 Type I

 {

 v2 = CHANGEBIT 2 v1

 }

 Var 2 Link FSUIPC_OUT Offset $0D0C Length 2

Var 1 is a link to your on/off toggle switch, connected to input 50 of the IOCards Master card.

(Note that 50 is just an example). Type I means on/off switch. If switch is on, Var 1 is 1 and if

switch is off, Var 1 is 0.

Var 2 is a link to the generic FS2004 FSUIPC offset with the lights controls (2 bytes long).

Bit 2 in that offsets represents the landing lights (See FSUIPC for Programmers.doc).

Each time you toggle your hardware switch, the body (the part between curly brackets) of Var

1 is executed. There is only one statement in that body; it means that bit 2 in var 2 will be set

according to the value of var 1. So if the toggle switch is ON, bit 2 will be 1, and if switch is

OFF bit 2 will be 0. Note that with the Changebit function no other bits in offset 0x0D0C will

be effected.

Light a led after n seconds

If you want to light a led with a delay of n seconds, you can use the DELAY function in

SIOC.

In this example the led will be lit after 4 seconds. The second parameter of the DELAY

function is times 1/100 second and the first parameter is the value that will be assigned after

the delay.

 Var 1

 {

 &Led = DELAY 1 400

 }

 Var 2 name Led Link IOCARD_OUT Output 92

In the next example the led will be lit after a random value between 1 and 4 seconds. The

parameters for the RANDOM function are the lower and upper bounds.

 Var 1

 {

 L0 = RANDOM 100 400

 &Led = DELAY 1 L0

 }

 Var 2 name Led Link IOCARD_OUT Output 92

Light a led for n seconds

If you want to light led for n seconds based on another event, you can use the DELAY

function in SIOC.

In this example the event is a 'button push'. If that happens we light a led for 4 seconds.

 Var 0

 {

 &Led = 0

 }

 Var 1 name Button Link IOCARD_SW Input 27 Type I

 {

 IF &Button = 1

 {

 IF &Led = 0

 {

 &Led = 1

 &Led = DELAY 0 400

 }

 }

 }

 Var 2 name Led Link IOCARD_OUT Output 92

Note that although you are using a push button the Type Attribute of Var 1 should be I.

Make a led blink for n seconds

In order to make a led blink for a number of seconds you can use the TIMER function in

SIOC.

We take the same event as the previous example, a 'button push'. If that happens we let a led

blink for 4 seconds.

 Var 0

 {

 &Led = 0

 }

 Var 1 name Button Link IOCARD_SW Input 27 Type I

 {

 IF &Button = 1

 {

 IF &Led = 0 // only start if led does not blink

 {

 &BlinkLed = 10 // begin value of timer

 &BlinkLed = TIMER 0 -1 40

 }

 }

 }

 Var 2 name BlinkLed

 {

 L0 = MOD &BlinkLed 2

 IF L0 = 0

 {

 &Led = 0

 }

 ELSE

 {

 &Led = 1

 }

 }

 Var 10 name Led Link IOCARD_OUT Output 92

The TIMER parameters mean:

 0 = end value,

 -1 = increment value (actually a decrement in this negative value case),

 40 = interval (* 10 msec)

So we are counting down from 10 to 0 with steps of -1, in intervals of 0.4 seconds. Note that

counting up is of course also possible.

The BlinkLed Var will regularly be assigned the Timer value (10, 9, 8, 7, 6,0). Due to the

Modulo 2 function in its body (10 MOD 2 = 0, 9 MOD 2 =1, 8 MOD 2 = 0), it will set the

value of the Led to 1 or 0 and we get the blinking effect.

Stop a blinking led

How do you stop a 'continuous' blinking led? This might be needed for blinking annunciators

that only stop blinking after pushing a button.

In this example a led starts blinking at the start of the SIOC program, but you can of course

also take other events to start the blinking of a led. The blinking is done with a TIMER, just as

in the previous example. The difference is that we now program the Timer for a very long

period, it counts down from 500.000 to 0 in steps of .4 seconds, long enough for a long haul

flight ;-).

As soon as you push the button, the code attached to the button will force the Timer value to

1 step before the end value. In the next Timer operation the Timer will end and the blinking

will stop. Make sure that the end value of the timer is an even value, so the last led value will

be 0.

 Var 0

 {

 &Led = 0

 &BlinkLed = 500000 // begin value of timer

 &BlinkLed = TIMER 0 -1 40

 }

 Var 1 name Button Link IOCARD_SW Input 28 Type P

 {

 &BlinkLed = 1 // equal to end value of timer (0) + 1

 }

 Var 2 name BlinkLed

 {

 L0 = MOD &BlinkLed 2

 IF L0 = 0

 {

 &Led = 0

 }

 ELSE

 {

 &Led = 1

 }

 }

 Var 10 name Led Link IOCARD_OUT Output 92

Make a led blink a fixed number of times

If you want to blink a led for a fixed number of times you can make use of the Blinks

subroutine approach defined below.

The parameter for this subroutine specifies the number of blinks. You can call Blinks with a

constant

 CALL &Blinks 4

or a variable

 CALL &Blinks L0

Here the subroutine Blinks. Note it is called recursively until all blinks have been generated.

 Var 1 name Blinks link SUBRUTINE // parameter is number of blinks

 {

 &Led = 1 // led on

 &LedOff = DELAY &Blinks 50 // half a sec ON

 }

 Var 2 name LedOff

 {

 L0 = &LedOff

 IF L0 > 0

 {

 &Complete = DELAY L0 50 // half a sec OFF

 }

 }

 Var 3 name Complete

 {

 L0 = &Complete

 IF L0 > 0

 {

 IF L0 > 1

 {

 L0 = L0 - 1

 CALL &Blinks L0 // recursive subroutine call

 }

 ELSE

 {

 &LedOff = 0 // make responsive for another series of Blinks.

 &Complete = 0 // make responsive for another series of Blinks.

 }

 }

 }

 Var 4, name Led Link IOCARD_OUT Output 92

The width of the ON pulse and the length of a cycle can be specified with the parameters for

the DELAY functions.

Note that in the Blinks subroutine (Var 1 and Var 2) I use a technique to hold up execution of

program flow.

An Endless Timer

If you want a function to be performed say every 50 msec, you should make use of an Endless

Timer, this is a Timer with increment zero, so it will never reach the end value...

It goes like this:

 Var 0 Value 0

 {

 &control = 0

 &control = TIMER 1 0 5

 }

 Var 1 name control Link SUBRUTINE

 {

 // regular control work in here (is called every 50 msec)

 }

The Timer calls a subroutine control after each interval. Put SIOC code for your regular

control work, such as motor control, in that subroutine. Note that the interval is x10 msec, in

this example 5x10 msec = 50 msec or 20 times per second.

Add auto repeat

It is good to have an auto repeat function for a Switch. For example the FSUIPC offset

0x4602 is used to increment the Fuel quantity in your aircraft's tank. But you do not want to

toggle a switch over and over again, you just want to set a switch to on, and after a while you

will want to set it to off.

We use the TIMER function for that. Start a timer (endlessly) counting up, during counting

we generate the right commands to FSUIPC, and we force the timer to stop when the switch is

set to off again.

 Var 1 Link IOCARD_SW Input 23 Type I

 {

 IF v1 = 1

 {

 &Fuel = 0 // startvalue of timer

 &Fuel = TIMER 1000 1 100 // 1 second interval, from 0 to 1000

 }

 ELSE

 {

 &Fuel = 999 // force timer to stop very soon ...

 }

 }

 Var 2 name Fuel

 {

 L0 = MOD &Fuel 2

 IF L0 = 0

 {

 &FSUIPC_Fuel = 177 // Set to value 177 to increment fuel

 }

 ELSE

 {

 &FSUIPC_Fuel = 0 // clear, so it will detect a new value

 }

 }

 Var 3 name FSUIPC_Fuel Link FSUIPC_OUT Offset $4602 Length 1

Set Altimeter(QNH)

In this example I'll show you how to set the Altimeter (QNH) with a gray type rotary encoder.

I use FSUIPC offset 0x3110 for that, this approach will work for almost any aircraft.

 Var 1 Link IOCARD_ENCODER Input 23 Aceleration 1 Type 2

 {

 L0 = v1 // * -1 turning clockwise should be plus

 IF L0 >0

 {

 v2 = 65883 // FS Control Kohlsman increment

 v2 = DELAY 0 10

 }

 ELSE

 {

 IF L0 < 0

 {

 v2 = 65884 // FS Control Kohlsman decrement

 v2 = DELAY 0 10

 }

 }

 }

 Var 2 Link FSUIPC_OUT Offset $3110 Length 4

If you turn clockwise, the rotary encoder values in Var 1 will be positive, and the FS Control

Kohlsman increment code (see FSUIPC documentation for that) is send to FSUIPC via Var 2.

After a delay of 100 msec Var 2 is reset to 0, so it will be ready to recognize a new value.

If you turn anti-clockwise, the rotary encoder values in Var 1 will be negative, and the

decrement code is generated. See the section on Rotary Encoder for information about how to

force the encoder to generate positive values when turing clockwise.

Play sound

In a cockpit you would like to play sounds. SIOC supports that in several ways. Let's start

with a basic example (that hopefully will not occur ...), a flight attendant telling you that there

is smoke coming out of the right engine ...

Add the smoke.wav file to the sioc folder.

Enable the SOUND Module in the sioc.ini file and define the smoke.wav file to be number 1:

 [SOUND MODULE]

 Sound_disable=No

 Volume=100

 [#1]

 Sound=smoke.wav

Make a short SIOC script. We define Var 1 as the SmokeStart control variable (it is linked to

the SOUND Module of SIOC). In Var 2 we write the sound file number to Var 1 if an on/off

switch at input 75 is set to 1, and the sound will start to play ...

 Var 1 name SmokeStart Link SOUND

 Var 2 Link IOCARD_SW Input 75 Type I

 {

 IF v2 = 1

 {

 &SmokeStart = 1 // number of the sound file defined in sioc.ini

 &SmokeStart = 0

 }

 }

Note that we have to set &SmokeStart back to 0 immediately, otherwise it will not recognise a

new value (other then 0).

If you want to play a sound repeatedly just put an asterisk before the name of the sound file

in sioc.ini:

 [#2]

 Sound=*wiper.wav

If you want to stop a playing sound you need a second sound control variable that does the

stopping:

 Var 1 name WiperStart Link SOUND

 Var 3 name WiperStop Link SOUND Type S // add S for Stop variable

 Var 2 Link IOCARD_SW Input 75 Type I

 {

 IF v2 = 1

 {

 &WiperStart = 2 // number of the sound file defined in sioc.ini

 &WiperStart = 0

 }

 ELSE

 {

 &WiperStop = 2 // number of the sound file defined in sioc.ini

 &WiperStop = 0

 }

 }

GMT HH:MM clock

As an example of a complete application in SIOC, here the code of a simple HH:MM clock

showing GMT time (or Zulu time). The time is obtained from two offsets in FSUIPC (see also

the example) and the hours and minutes are shown at a 4 digit display (see also the example

about how to write to a display).

 Var 1 name Hours Link FSUIPC_IN Offset $023B Length 1 // (0-23)

 {

 &D_ClockH = &Hours

 }

 Var 2 name Minutes Link FSUIPC_IN Offset $023C Length 1 // (0-59)

 {

 &D_ClockM = &Minutes

 }

 Var 3 name D_ClockM Link IOCARD_DISPLAY Digit 3 Numbers 2 // 2 digits

 Var 4 name D_ClockH Link IOCARD_DISPLAY Digit 5 Numbers 2 // 2 digits

This is just a basic clock. One can easily add functionality, such as an option to show local

time, a push button to switch between local and GMT, and support for lights test and 'cold and

dark' cockpit situations.

Key generation in SIOC

Important Note: I hate to use keys as interface method, and I'm glad it is not necessary for the

Level-D 767 and the PSX 744. For other add-ons this is often the only option.

There are two possible ways to send keys from within a SIOC script.

Method 1: SIOC as a keyboard emulator.

You send a value to a variable with Link KEYS:

 Var 1 Link IOCARD_SW Input 116 Type I

 {

 IF v1 = 1

 {

 &Key = 37

 }

 ELSE

 {

 &Key = 0

 }

 }

 Var 2 name Key Link KEYS

Note that you always have to reset the Key variable to a value that has no key attached (in this

example 0) otherwise SIOC will not detect a second assignment of value 37 to &Key (because

the value does not change, nothing will happen).

In the sioc.ini you define what key will be sent if this Keys variable receives a certain value:

 [************** KEYBOARD EMULATOR MODULE ***************]

 window = "Microsoft Flight Simulator X"

 #37=B

This method works ok but it is rather basic in the ways that keys can be defined.

An advantage is that you can specify the window the keys will be send to, so you can use this

to send keys to any program window (although only one, and it must have focus). A drawback

is that you can only use this method with Flight Simulator and SIOC running at the same PC.

Method 2: SIOC toggling FSUIPC virtual buttons

There is an easier, more user friendly and and more powerful way of generating keys from

within SIOC, it is based on the facilities that FSUIPC provides.

FSUIPC contains the concept of a virtual joystick with 32 buttons. Nine of of these joysticks,

each DWORD long (4 bytes), are available starting from FSUIPC offset 0x3340 (see FSUIPC

for Programmers.doc in the FSUIPC SDK):

"Each DWORD represents one joystick with 32 buttons. If an external

program sets or clears a bit in any of these 9 DWORDS the "Buttons" page in

FSUIPC will register the change of a button operation in one of Joystick

numbers 64 to 73 (corresponding to the 9 DWORDS). So, FSUIPC can be used

to program whatever action the user wants."

In the next small part of SIOC code we let SIOC toggle bit 0 of FSUIPC Joystick 64 upon a

press of a momentary push button connected to input 116:

 Var 1 Link IOCARD_SW Input 116 Type I

 {

 &FO_JoyStick64 = CHANGEBIT 0 v1 // toggle bit 0 of joystick 64

 }

 Var 2 name FO_JoyStick64 Link FSUIPC_OUT Offset $3340 Length 4

Simple is not it? We could do exactly the same for the other 31 buttons of Joystick 64 or for

each button in the other 8 Joysticks.

Assuming SIOC is running this SIOC code, we start Flight Simulator, open the FSUIPC

module and we select the "Buttons+Switches" tab. If we now push our button the following

information will appear:

We see the Joystick number 64 and button 0 is recognised!

Now we 'tick' Select for key press, click Set, and type in the key(-s) (at our keyboard) that we

want to have sent by FSUIPC if this virtual button is pressed (again).

Contrary to Method 1, FSUIPC always sends the keys to the current active window at the

Flightsim PC. Note that this also works over a network, via wideFS.

Note that FSUIPC is very powerful, we can do much more like specifying sending the key

repeatedly when the button press is held, or to generate another key if the button is released.

We can also do other things than sending keys, like selecting a FS control or one of the PM

controls.

Note also that it does not matter where your SIOC program runs, the virtual buttons will

always be recognized by FSUIPC at your Flightsim PC.

Send FSUIPC Control in SIOC

From the "FSUIPC for Programmers.pdf":

FSUIPC offset $3110 (length 8) operates a facility to send any 'controls' to

Flight simulator. Write all 8 bytes for controls which use a value, but just 4

will do for 'button' types. (The list of controls can be found in "List of FS2004

Controls.pdf")

In SIOC we can send such a FSUIPC control (with optional parameter) like this:

 Var 1 name FS_CONTROL Link FSUIPC_OUT Offset $3110 Length 4

 Var 2 name FS_PAR Link FSUIPC_OUT Offset $3114 Length 4

 Var 3 Link IOCARD_SW Input 12 Type P

 {

 &FS_PAR = 1

 &FS_CONTROL = 66712

 &FS_CONTROL = DELAY 0 10

 }

In this example each time the button is pressed we send a value 1 first and then the control

(code) 66712. Note that after a delay of 100 msec we reset Var FS_CONTROL, otherwise it

will not detect that another FS_CONTROL 66712 needs to be send.

A fine example of how you can use this is setting the QNH.

Use of the DEVICE attribute

A USB expansion card can support up to 4 Master Cards. If you need more in- outputs or

displays, no problem, just add another USB expansion card. The numbering of inputs, outputs

and displays at this second USB card is exactly the same as the ones at the first.

In order to avoid conflict, SIOC has introduced the Attribute DEVICE, e.g. Input 21 at

logical DEVICE 0 is defined like this:

Var 1 Link IOCARD_SW DEVICE 0 Input 21

A device number is the logical number that you assign to the corresponding USB expansion

card (DEVICE 0 is default). Input 21 at logical DEVICE 1 is defined like this:

Var 2 Link IOCARD_SW DEVICE 1 Input 21

The connection between a logical USB device number in SIOC and a physical device number

in reality (as shown in the SIOC main window), is defined in a MASTER statement in

sioc.ini.

For instance we could have defined

MASTER=0,4,4,13

meaning: Logical DEVICE 0 is linked to a USB expansion card at real Device

13, and it contains 4 master Cards.

MASTER=1,4,2,19

meaning: Logical DEVICE 1 is linked to a USB expansion card at real Device

19, and it contains 2 master Cards.

Other Opencockpits USB based cards behave exactly the same. Take the USB outputs card

for instance, after we have added this line to the MASTERS section of sioc.ini

MASTER=2,6,1,22

meaning: Logical DEVICE 2 is linked to a USB outputs card at real Device

22.

we can define in our SIOC script again a output 21 at DEVICE 2 (being the USB outputs

card).

Var 3 Link IOCARD_OUT DEVICE 2 Output 21

Cold and dark and lights test

Suppose we have this piece of code in which a led Q is controlled by the value of an FSUIPC

offset. If the value is > 28 the led will lit.

 Var 1 name LedValue Link FSUIPC_IN Offset $abcd Length 2

 {

 IF &LedValue >28

 {

 &O_Q = 1

 }

 ELSE

 {

 &O_Q = 0

 }

 }

 Var 2 name O_Q Link IOCARD_OUT Output 95 // led Q

This works perfectly fine.

QUESTION:

The question now is, how do we add Cold and Dark Cockpit support and Lights Test support

to this (output) led?

Suppose we have a Switch for lights test connected to an input:

 Var 101 name LightsTest Link IOCARD_SW Input 116 Type I

We cannot just write:

 Var 101 name LightsTest Link IOCARD_SW Input 116 Type I

 {

 IF &LightsTest = 1

 {

 &O_Q = 1

 }

 }

Because: If we toggle the Switch back to normal (0) nothing will happen, the led remains lit ...

How do we give the led the value it had before the lights test??? The value of Var 1 has not

changed during the lights test so the code to set the led will not run again ...

A similar problem arises if we have Cold and Dark Cockpit info available in our panel (in this

example it is out of scope how we obtain or derive such info).

 Var 100 name ColdAndDark Link FSUIPC_IN Offset $abcd Length 2

Again, we cannot just write

 Var 100 name ColdAndDark Link FSUIPC_IN Offset $abcd Length 2

 {

 IF &ColdAndDark = 1

 {

 &O_Q = 0

 }

 }

Because: If your aircraft comes to live, ColdAndDark becomes 0, and nothing will happen,

the led remains off ... How do we set the led at the right value? The value of Var 1 may have

changed during the cold and dark period, but the code to set the led will not run again at the

cold and dark state change ...

ANSWER

A generic solution for this synchronization problem is to apply an approach in which we do

not write to an output directly, but via a separate subroutine (for each output). In that

subroutine we first test for the special situations Cold and Dark and Lights Test and act

accordingly, and if they do not apply, we write the actual value of the led.

This subroutine is to be called from three (!) places in our code: 1) if the value of the led

changes. 2) if there is a change of state in cold and dark (both ways, from cold to normal and

from normal to code) and 3) if there is a change in LightsTest state (both ways too).

Below I give a complete script. I only describe one output, but for other outputs (and for

digits) it will go exactly the same.

 Var 1 name LedValue Link FSUIPC_IN Offset $034C Length 2

 {

 IF &LedValue >28

 {

 &Q = 1

 }

 ELSE

 {

 &Q = 0

 }

 }

 Var 2 name O_Q Link IOCARD_OUT Output 95

 Var 3 name Q // always keep the actual value for the led

 {

 CALL &OutQ // call the routine to write the value to the led

 }

 Var 4 name OutQ Link SUBRUTINE

 {

 IF &ColdAndDark = 1

 {

 &O_Q = 0 // put the led OFF

 }

 ELSE

 {

 IF &LightsTest = 1

 {

 &O_Q = 1 // put the led ON

 }

 ELSE

 {

 &O_Q = &Q // write the actual led value

 }

 }

 }

 //[Here you can put code for more outputs]

The common part to detect changes in cold and dark and lights test and to call the output

routines for led's (and displays):

 Var 100 name ColdAndDark Link FSUIPC_IN Offset $abcd Length 2

 {

 CALL &Refresh

 }

 Var 101 name LightsTest Link IOCARD_SW Input 116 Type I

 {

 CALL &Refresh

 }

 Var 103 name Refresh Link SUBRUTINE

 {

 CALL &OutQ

// [add here all other CALL's to Out-routines for leds and displays]

 }

